Sharply transitive sets in quasigroup actions

نویسندگان

  • Bokhee Im
  • Ji-Young Ryu
  • Jonathan D.H. Smith
چکیده

This paper forms part of the general development of the theory of quasigroup permutation representations. Here, the concept of sharp transitivity is extended from group actions to quasigroup actions. Examples of nontrivial sharply transitive sets of quasigroup actions are constructed. A general theorem shows that uniformity of the action is necessary for the existence of a sharply transitive set. The concept of sharp transitivity is related to two pairwise compatibility relations and to maximal cliques within the corresponding compatibility graphs.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Sharply $(n-2)$-transitive Sets of Permutations

Let $S_n$ be the symmetric group on the set $[n]={1, 2, ldots, n}$. For $gin S_n$ let $fix(g)$ denote the number of fixed points of $g$. A subset $S$ of $S_n$ is called $t$-emph{transitive} if for any two $t$-tuples $(x_1,x_2,ldots,x_t)$ and $(y_1,y_2,ldots ,y_t)$ of distinct elements of $[n]$, there exists $gin S$ such that $x_{i}^g=y_{i}$ for any $1leq ileq t$ and additionally $S$ is called e...

متن کامل

Sharply 2-transitive sets of permutations and groups of affine projectivities

Using new results on sharply transitive subsets, we determine the groups of projectivities of finite affine planes, apart from (unknown) planes of order 23 or 24. The group of all projectivities of a geometry G is a measure for the complexity of G: this group tends to be rather large if G is far from being a classical geometry. See [PS81] for more information on the role of projectivities in ge...

متن کامل

Some sharply transitive partially ordered sets

A partially ordered set (X, is called sharply transitive if its automorphism group is sharply transitive on X, that is, it is transitive and the stabilizer of every element is triviaL It is shown that every free group is the automorphism group of a sharply transitive partially ordered set. It is also shown that there exists a sharply transitive partially ordered set (-,Y, :::;) having some maxi...

متن کامل

On the non-existence of sharply transitive sets of permutations in certain finite permutation groups

In this short note we present a simple combinatorial trick which can be effectively applied to show the non-existence of sharply transitive sets of permutations in certain finite permutation groups.

متن کامل

Sharply 2-transitive groups of projectivities in generalized polygons

The group of projectivities of (a line of) a projective plane is always 3-transitive. It is well known that the projective planes with a sharply 3-transitive group of projectivities are classi/ed: they are precisely the Pappian projective planes. It is also well known that the group of projectivities of a generalized polygon is 2-transitive. Here, we classify all generalized quadrangles, all /n...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010